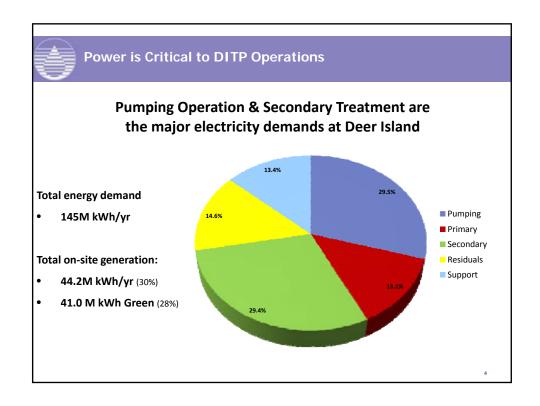
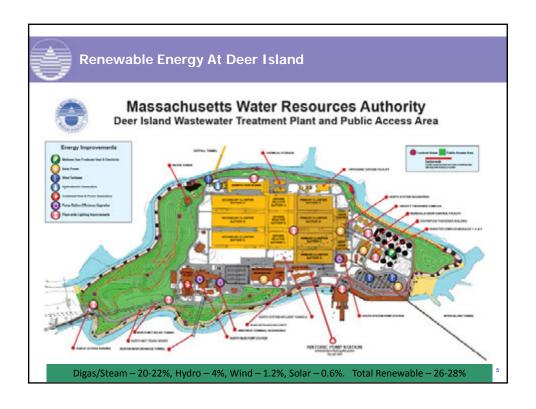


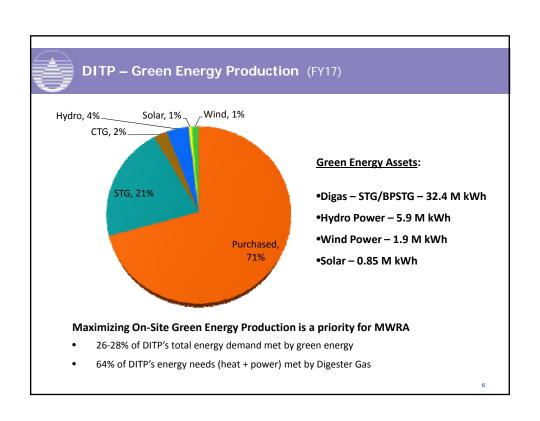
Deer Island Wastewater Treatment Plant

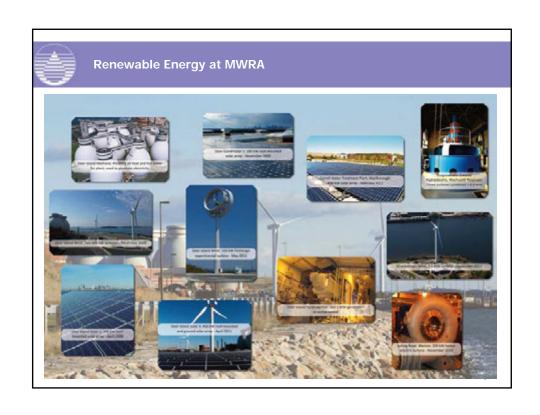
- Result of \$3.8 Billion Construction Project
- 2nd Largest Wastewater Treatment Plant in the United States

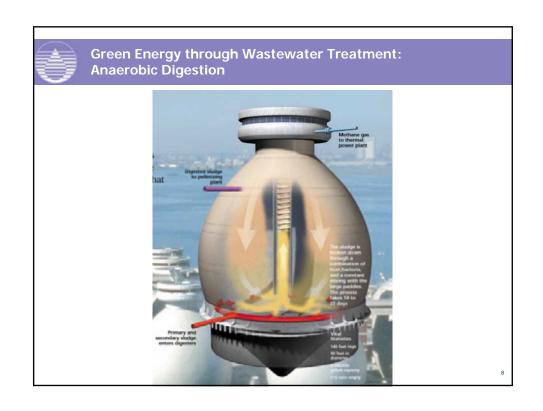
Detroit MWRA/DITP Stickney, Chicago, IL Blue Plains, DCWASA 671 MGD/1600 MGD 360 MGD / 1310 MGD 750 MGD/1200 MGD 370 MGD/1.076 BGD (advance/ nit/denit


- Treatment Capacity:
 - Maximum
 - 1.3 Billion Gal/Day
 combined sever system
 - Up to 700 MGD by Secondary Treatment
 - Average Daily Flow:
 - 360 Million Gal/Day
- Built on 210 Acres
 - includes 60 acres of public access area




The ultimate Recycling Facility:


Water – Cleaned and returned to Water Cycle Solids removed -


Anaerobically Digested – Produce Heat & Power Remaining Solids – converted to Fertilizer Pellet

DITP – Digester Gas Generation & Use

- Anaerobic Digestion:
 - 240 dtpd solid in, 100 dtpd to FRSA for pellet conversion
 - Digas 188 kscfh generated on average @ 62-65% methane
- OSTPP: Bottom-Cycle Generation
 - Digas 98+% utilized
 - 95+% of heat demand met by Digas (remainder by Fuel Oil, 250 Kgal)
 - 32.4 M kWh generation from Steam Turbine

Combined Heat & Power Process – Currently Used by DITP DITP's Original Combined Heat & Power System (CHP) Steam Turbine Electrical Power 17.6% of demand DITP's Revised CHP Plant Heating Loop ---Electrical Power Waste Heat (eff) Deaerator (boiler recycle) **Bottom Cycle Generation** Heat First - 60% efficient · Generate Steam then Hot Water Power Second – 9% efficient · Generate Electricity from Steam New BPSTG / Steam Bypass Valve improves steam to electricity conversion process by extracting more heat per unit steam

Hydroelectric Power

- Energy Recovery from Plant Effluent
- Two 1 MW Hydroelectric Generators
- Electricity Production 6M kWh/yr

11

Wind Turbines

- Two, 190-foot turbines installed in August 2009
 - Generate 1.9 million kWh per year
- Ogin Experimental 100 kW unit
 - Claim to be 33% more efficient than traditional turbines
 - Fully funded by Ogin
 - Engineering prototype

12

Solar Power

- 100 kW photovoltaic system completed in May 2008
- 180 kW photovoltaic system completed in February 2010
- Solar through Power Purchase Agreement partially funded through ARRA
 - Total Installation of PPA 450kW
 - Grit roof 220kW
 - Parking lot ground 230kW

Operations/Process Control – EE Efforts

COMPLETED

- Main Pump Station Shaft Height Adjustments
 - No cost
 - 4.5M kWh/yr savings
- Lighting
 - Phases 1, 2, 4 (A, B), R/T, 5, 6
 Exterior Roadway Phase 1-3
 - \$2.2M total cost
 - \$700k incentive provided
 - 3.5M kWh/yr savings

Operations/Process Control – EE Efforts

COMPLETED

- Secondary Optimization
 - Shut off last stage aerator
 - 3.4M kWh/yr savings (No cost)
 - DO Probe Installation/Reduction of Cold Box Operation
 - \$234k total cost
 - \$148k incentive provided
 - 3.5M kWh/yr savings
- Reduce Second Channel Blower Run Time
 - 320,550 kWh, \$30k (no cost)
- Low Pressure Plant Water System Set point Adjustment
 - 158,250 kWh, \$15k (no cost)
- · Operate One Cooling Tower
 - 397,300 kWh, \$37k (no cost)
- Second Digester Pump only in winter months
 - 525,600 kWh, \$50k (no cost)

Operations/Process Control – EE Efforts

FUTURE

- More Lighting
- Secondary Optimization (completed in early FY17)
 - Installation of VFD's in Stage 5 & 6 reactors
 - 18 VFDs on 100 hp mixer motors saving 3.4 MkWh annually
- Odor Control fan controls
- Instrument Air Compressors
- More Water reduction / conservation efforts
- Pump Systems Optimization

